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Abstract Plants regulate molecular bioactivity in

response to daily and seasonal environmental fluctu-

ations in temperature, light, humidity, and precipita-

tion. These rhythms interconnect, overlap, and

feedback both into each other and into the plant’s

endogenous circadian clock. The resulting regulatory

network tightly ensures that the overall phytochemical

composition is highly adaptive to the plant’s needs at

any point in time. Temporally coordinated control of

primary and secondary metabolism ensures phyto-

chemicals are in tune with the demands of the

environment and the available resources. As a conse-

quence, phytochemical composition varies throughout

the day and year. This variation in phytochemical

abundance and composition across time can affect

experimental results and conclusions. Understanding

how phytochemical composition varies across time is

critical for uncovering the underlying regulatory

connections and ultimately improving the quality of

phytochemical products. Herein, we review the mech-

anisms underlying diel and seasonal variations in

phytochemical composition and provide examples of

temporal regulation of specific compounds within

phenol, terpenoid, and alkaloid phytochemical classes.

Graphic abstract Temporal regulation of phyto-

chemical composition. The phytochemical composi-

tion of a plant is under complex control, affected by

both external environmental factors and endogenous

circadian rhythms. The environmental factors that

directly affect phytochemical profiles and concentra-

tions themselves vary across time of day and time of

year. These cyclic environmental factors also entrain

the endogenous circadian clock which imposes addi-

tional regulation on the production and processing of

many phytochemicals. This concerted effort to ensure

phytochemicals are exquisitely in tune with the

demands of the environment results in fluctuating

phytochemical composition. Variation in phytochem-

ical abundance and composition across time can affect

experimental results and conclusions. Failing to

consider the factors of time of day and year can result

in misleading or inconsistent estimations of the

potency and composition of phytochemical extrac-

tions. Integrating temporal factors will improve our

understanding of the underlying regulatory connec-

tions and ultimately improve the quality of phyto-

chemical products.
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Introduction

The properties that determine the perceived value of a

plant as a source for phytochemicals depend on the

composition, relative concentration, and potency of

these bioactive molecules. All of these factors can

vary as highly plastic plant biochemistry responds

dynamically to the environment. Research on spe-

cialty crops producing phytochemicals has shown that

value-added phenotypes from aesthetics to flavor and

texture vary with environmental changes. In turn,

these variations can impact shelf life, food safety, and

health benefits that determine the value and drive the

consumer perception of quality (Ahmed and Stepp

2016). Risks for food waste and financial harm to

producers and retailers are enhanced as devalued or

unaesthetic products are discarded (Buzby et al. 2014).

For example, consumers can taste the difference

between tea leaves grown in the sun versus shade

(Ahmed et al. 2010) or harvested during the monsoon

season versus the dry spring (Ahmed et al. 2014).

Therefore, understanding how environmental factors

impact the phytochemical composition can have

profound consequences in breeding and agricultural

production of specialty crops.

Variation in primary metabolism throughout dif-

ferent times of day or seasons of the year is well-

established (Farré and Weise 2012). However, com-

paratively little is known on the temporal regulation of

specialized metabolites. Temporal changes in metabo-

lite concentrations can alter the efficacy of nutraceu-

ticals. Daily or seasonal changes in the metabolic

profile of a plant can alter the toxicity or potency.

Moreover, understanding the temporal variation in

specialized metabolites can improve selection and

breeding strategies, increasing the consistency of

phytochemical production and research. In this

review, we focus on the impact of recurring daily

and seasonal cycles on phytochemical biochemistry.

We provide a general overview of the mechanisms that

can drive daily and seasonal variation in phytochem-

ical levels and then provide specific examples of

compounds in various phytochemical classes that

show daily and seasonal variation. Finally, we discuss
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how current trends are changing these rhythmic

environmental patterns and how these changes may

impact phytochemical research and production.

In several plant species, the regulatory and biosyn-

thetic genes of specialized metabolite pathways show

circadian, diel, or photoperiod driven rhythmic tran-

script expression (Alabadı́ et al. 2002; Filichkin et al.

2011; Pavarini et al. 2012; Gyllenstrand et al. 2014;

Soni et al. 2015; Fenske and Imaizumi 2016; Zeng

et al. 2017; Greenham et al. 2017; Koda et al. 2017;

Weiss et al. 2018; Yin et al. 2018; Yoshida and

Oyama-okubo 2018). The correlation between

changes in transcript andmetabolite levels will depend

on the environmental conditions and the specific

pathway of interest. Therefore, in this review, where

possible, we focus on evidence of temporal variation

at the metabolite level.

Daily cycles of environmental change drive

variation in phytochemical production

and processing

Plants coordinate their molecular activities by time to

operate at optimum efficiency. Growth, stomatal

opening, photosynthesis, metabolism, nutrient, and

water uptake are timed to coincide with the availabil-

ity of resources; primarily light and water (Nozue and

Maloof 2006; Harmer 2010). Throughout a 24 h

period, there are changes in light intensity, light

quality, temperature, and humidity. These four factors

have a direct impact on nutrient uptake and photosyn-

thesis and therefore impact the availability and

distribution of carbon and nitrogen (Rufty et al.

1989; Bläsing et al. 2005; Ruts et al. 2012). This

cycling availability of carbon and nitrogen starting

materials has consequences on the production and

processing of specialized metabolites. In addition to

modulating the availability of the building blocks

necessary to generate specialized metabolites, these

daily-changing environmental factors also directly

influence the pathways that regulate specialized

metabolites. Not only do temperature, humidity, light

intensity, and quality directly influence specialized

metabolite levels, these four factors also serve as cues

to modulate the plant’s circadian clock so that it is in

sync with the local environment (McClung

2006, 2008; Harmer 2010; Mwimba et al. 2018). This

internal circadian clock also regulates the production

and processing of specialized metabolites (Bläsing

et al. 2005). Finally, the physiological and molecular

responses to abiotic and biotic stresses are ‘gated’ so

that the potential for response is maximal when the

stress stimulus is most likely to occur.

Regulation of phytochemicals by changes in light

quality and temperature

For many phytochemicals, their accumulation levels

are directly affected by changes in light, temperature,

and water availability. As these environmental fea-

tures vary both throughout the day and year, the

impact of these environmental variables can result in

their altered accumulation depending on the time of

day or year the plant is sampled.

Light quality

The filtering effects of the atmosphere change as the

position of the sun in the sky changes throughout the

day and the year, altering the total light intensity.

Additionally, since the atmospheric filtering is not

consistent across all wavelengths, this change in the

angle of the sun also impacts the spectrum of light that

is available to plants. The accumulation of some

phytochemicals is directly impacted by changes in

light quality, perhaps driving their daily and seasonal

variation in levels.

Blue light and other shorter wavelengths are

strongly affected by Rayleigh scattering, resulting in

a lower abundance of these wavelengths in winter as

well as dawn and dusk which leads to an increase in the

relative amount of the longer, red wavelengths. The

ratio of the red to far-red wavelengths impacts

developmental transitions such as the transition to

flowering. The mechanism for this sensitivity in

Arabidopsis is through the light-quality dependent

switching of the phytochromes between active and

inactive states (Ulijasz and Vierstra 2011; Ushijima

et al. 2017; Sethe et al. 2017). The phytochromes in

Arabidopsis impact photosynthesis and primary meta-

bolism (Yang et al. 2016a, b; Kreslavski et al. 2018).

Loss of phytochromes alter the metabolic profiles with

increases in sugars and amino acids. These changes are

similar to those observed in plants under abiotic stress,

in particular, there is a large accumulation of proline

and raffinose (Yang et al. 2016a, b). Transcriptional

responses to stress are also induced in the
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phytochrome mutants, suggesting a connection

between light quality sensing through the phy-

tochromes and induction of abiotic stress responses.

Several phytochemical pathways are sensitive to

changes in light quality. Both red and blue light

enhance total antioxidant activity in the Chinese

medicinal herb, Rehmannia glutinosa (Manivannan

et al. 2015). Total phenol content and flavonoid levels

were responsive to specific wavelengths. Blue-light

resulted in higher phenol content while red-light

favored an increase in flavonoid levels. Red light

induction of flavonoids was also reported in Pisum

sativum (Bottomley et al. 1966). However, in other

species, flavonoid levels increase with blue light. In

the medicinal plant, Cyclocarya paliurus total flavo-

noid levels were the most responsive to blue light (Liu

et al. 2018). The levels of the flavonoids quercetin and

3-malonylglucoside and the phenylpropanoid cichoric

acid increase under prolonged enhanced blue light in

red leaf lettuce and basil (Taulavuori et al. 2016). In

Betula pendula (silver birch) seedlings, UV-B sup-

plementation also increased levels of quercetins,

kaempferols, and chlorogenic acids (Tegelberg et al.

2004). Total essential oils increased under blue and

red light in Mentha piperita, M. spicata, and M.

longifolia compared to white light or sunlight (Sabza-

lian et al. 2014). However, like flavonoids, the effect

of light quality on essential oils tends to be species

specific. In the Sabzalian et al. (2014) study, the three

Mentha species showed significantly higher levels of

essential oils under red light compared to blue light.

Red light also increased menthol levels, the primary

essential oil compound in Mentha arvensis, greater

than blue light (Nishioka et al. 2008). In Mentha

piperita, menthol biosynthesis was reduced by 25%

when supplemented with blue light and resulted in a

significant decrease in essential oil and total phenol

content (Maffei and Scannerini 1999). A recent review

by Dou et al. (2017) provides other examples of light

quality impacts on phytochemicals in herb species.

The seasonal changes in light quality are greatest the

farther one is from the equator suggesting that there

will be an interaction between seasonal variability and

latitude.

Temperature

The variation in temperature throughout the year,

particularly in temperate climates, can be quite drastic.

Perhaps less obvious is that the day to night temper-

ature differential can also be significant, even in

tropical climates. This variation in temperature across

time of day and season of the year can also result in a

corresponding variability in phytochemical levels.

Total glucosinolate levels and ascorbic acid increased

in sprouts germinated at 30 �C compared to those at

20 �C or 10 �C in broccoli (Brassica oleracea) and

rocket sprouts (Eruca sativa) (Ragusa et al. 2017).

Increasing temperature enhanced the total polyphenol

content of broccoli sprouts but reduced the total

polyphenol amount in rocket sprouts. Increasing

temperature (20 �C, 25 �C, and 30 �C) also resulted

in significantly greater phenolic acid and flavonoid

production in wheat (Triticum spp.), irrespective of

genotype (Shamloo et al. 2017). The levels of

campesterol decreased across genotypes while other

phytosterols in wheat were not significantly affected

by the temperature change. In St. John’s wort

(Hypericum perforatum) 15 days of elevated temper-

ature (30 �C or 35 �C) before harvest increased the

concentration of the anthraquinones, hypericin and

pseudohypericin, and the phloroglucinol, hyperforin

(Zobayed et al. 2005). These are considered the active

compounds in H. perforatum (Bauer et al. 2001) and

their sensitivity to temperature may result in different

potency for harvested plant material.

In Zea mays (Christie et al. 1994), Arabidopsis

(Leyva et al. 1995; Rowan et al. 2009), Nicotiana

tabacum (Huang et al. 2012) and apple (Malus spp.)

(Ubi et al. 2006) anthocyanin levels are increased by

lower temperatures and reduced in higher tempera-

tures. Changes in phytochemical levels in response to

temperature are dynamic processes and evaluating the

response to temperature at a single time point may not

provide a clear picture of the full intersection between

the changing temperature and the biochemical

response. For example, in plum fruit (Prunus salicina)

the initial response to high temperature is an increase

in anthocyanin, however, after 9 days at high temper-

atures, the total anthocyanin dropped below control

levels (Niu et al. 2017). Monitoring the activity of a

hydrogen peroxide-based degradation mechanism

showed that the accumulation of anthocyanin is a

balance between synthesis and degradation. The

reactive oxygen-based degradation suggests other

environmental factors may modulate the tempera-

ture-induced degradation of anthocyanin in plum fruit.
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Changes in temperature are not uniform, the plant

response to temperature changes at night are distinct

from temperature perturbations during the day (Gri-

nevich et al. 2019). The difference between day and

night temperature impacts the overall growth of

tomato (Lycopersicum esculentum), fruit quality, and

the secretion of low molecular weight organic acids

from the root which can impact nutrient uptake

(Papadopoulos and Hao 2000; Yang et al.

2014, 2016a, b). A mild increase in nighttime

temperature appears to impact primary metabolism

resulting in reduced yield and grain quality in rice and

wheat (Ziska and Manalo 1996; Peng et al. 2004;

Counce et al. 2005; Lobell and Ortiz-Monasterio

2007; Kanno et al. 2009; Mohammed and Tarpley

2009; Welch et al. 2010; Glaubitz et al. 2015; Laza

et al. 2015; Shi et al. 2017; Impa et al. 2018). An

enrichment for stress-responsive and reactive oxygen

scavenging proteins was observed specifically under

increased night temperatures in rice grains (Li et al.

2011). If these altered changes occur in other plant

species, the impacts of changes in night temperature

on specialized metabolites could be distinct from the

impacts of changes in temperature during the day.

Most studies to date investigate the response of

specialized metabolites to increasing temperatures

by employing higher daytime temperatures or a

consistent increase in both day and night temperatures.

The asymmetric pattern of global warming (IPCC

2018; Xia et al. 2014) suggests that it will be essential

to understand the impacts of warming nights on

specialized metabolite production. Ibrahim et al.

(2010) investigated the specific role of altered night

temperatures on volatile organic compounds (VOCs)

and found that increasing night temperatures increased

the VOC emissions detected during the day. Most

VOCs examined showed a linear relationship between

increasing night temperature and emission levels.

However, in contrast to previous studies that examined

daytime temperature changes, isoprene emission was

not correlated with rising temperatures at night

(Gouinguene and Turlings 2002; Tarvainen et al.

2005; Helmig et al. 2007; Sharkey et al. 2008;

Copolovici et al. 2012). The VOC isoprene may

provide an adaptive role (Sharkey et al. 2008)

protecting plants from heat-induced damage, (re-

viewed in Sharkey et al. 2008). Therefore, under-

standing if isoprene emission is differentially

responsive between night and day temperatures could

impact our understanding of how the perception and

response to stress vary across time.

Water availability

For most plants, the availability of water varies daily

and seasonally. Diel oscillations in water potential in

the plant are driven by active photosynthesis and

associated transpiration through open stomata during

the day. At dawn the humidity drops and simultane-

ously stomata open, resulting in increased water losses

from aerial plant tissue (Klepper 1968). The water

potential continues to drop throughout the day as the

open stomata facilitate CO2 acquisition. In most

species, water potential is the lowest in the late

afternoon. Once the stomata close, the rate of water

uptake exceeds the rate of water loss and leaves and

fruits regain their water potential. In some plant

species, the increased water potential at night fuels the

hydraulic redistribution of moisture in the soil

(Richards and Caldwell 1987; Caldwell et al. 1998).

This daily rhythm persists even with reduced water

levels. Low water potential in the root environment,

through loss of soil moisture throughout the daytime

period, can impact nutrient uptake and the transport of

metabolites or the precursors needed to generate

phytochemicals (Plaut and Reinhold 1965; Greenway

et al. 1969).

Changes in water availability throughout the year

have a higher amplitude than daily changes. In most

locations, precipitation and water availability have a

strong seasonal component with a wet and dry season

(Snyder and Tartowski 2006; Taxak et al. 2014).

Water availability affects the accumulation of several

phytochemicals. In Coffea arabica leaves, irrigation

reduced the levels of the quinone pheophytin, a

photosynthetic pigment (Scheel et al. 2016). Tea

(Camellia sinensis) harvested during the dry season

had higher concentrations of desirable methylxanthi-

nes and polyphenols than in the monsoon season

(Ahmed et al. 2014). Phenolic accumulation in

response to drought has also been reported in

Amaranthus tricolor (Sarker and Oba 2018) and Zea

maize (Hura et al. 2008). However, phenolic content

shows variability in response to water availability

across plant species. In peanut (Arachis hypogaea L.),

phenolic content increased in leaves and stems in

response to drought stress, but decreased in the seeds

(Aninbon et al. 2016). Using a rain-out shelter
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Cheruiyot et al. (2007) observed that tea cultivars had

lower phenolic levels in drought conditions. A similar

decrease in phenolic content was observed in cotton

leaves (Shah et al. 2011; Shallan et al. 2012), and

under progressive water deficit, both Shiraz and

Cabernet Sauvignon grape cultivars (Vitis vinifera)

showed a decrease in flavonols and non-flavonoid

phenolic compounds (Hochberg et al. 2013). In the

Shiraz cultivar, quercetin-3-O-galactoside and rutin

increased under water deficit. Phenolic compounds

decreased in response to drought in sensitive tomato

(Solanum lycopersicum L.) cultivars, but increased in

response to drought in Zarina, a tolerant cultivar

(Sánchez-Rodrı́guez et al. 2011). The tolerant Zarina

cultivar also showed an increase in rutin and flavonoid

levels. In other plant species drought induces the

accumulation of flavonoids (Hernández et al. 2004;

Yang et al. 2007; Ma et al. 2014; Shojaie et al. 2016).

Under mild drought stress, the diel accumulation

patterns of non-structural carbohydrates showed

stress-induced changes in Brassica rapa plants, sug-

gesting an interaction between diel regulation and

abiotic stress responses (Greenham et al. 2017).

Under both mild and moderate water stress the

components of essential oils, geraniol, and citral

increased in two species of lemongrass, Cymbopogon

nardus and Cymbopogon pendulus (Singh-Sangwan

et al. 1994). In medicinal plants, the concentration of

desired phytochemicals can be increased by growth in

water limiting conditions (Jaafar et al. 2012; Selmar

and Kleinwächter 2013). For example, the accumula-

tion of hyperforin in St. John’s wort (Hypericum

perforatum) (Zobayed et al. 2007) and ajmalicine in

Catharanthus roseus (Jaleel et al. 2008) increases in

response to reduced water stress.

Like changes in the pattern of temperature cycles,

climate change is affecting the timing of precipitation

events, with a seasonal component to even extreme

precipitation events (Unal et al. 2012; Pal et al. 2013;

Keggenhoff et al. 2014; Ganguli and Ganguly 2016;

Gitau 2016; Rahimpour et al. 2016; Tye et al. 2016;

Mallakpour and Villarini 2017; Roque-Malo and

Kumar 2017). In the US Ohio/Missouri River valleys,

the start of the dry season is altered by 2–3 weeks

while the wet season in east New York arrives about

3 weeks earlier than a century ago (Pal et al. 2013).

These disruptions to the seasonal patterns of water

availability may alter the phytochemical composition

of plants even if they are harvested at the same time of

year.

Additional examples of the effects of light, tem-

perature, water availability and other environmental

factors on the accumulation of specialized metabolites

have been reviewed by Ramakrishna and Ravishankar

(2011), Ncube et al. (2012), Verma and Shukla (2015),

Borges et al. (2017), Yang et al. (2018).

Regulation of phytochemicals by the circadian

clock

The plant’s endogenous circadian clock is a crucial

part of coordinating molecular activities with resource

availability that varies daily and seasonally, thereby

providing an evolutionary advantage (Green et al.

2002; Dodd et al. 2005; Yerushalmi et al. 2011;

Bendix et al. 2015). Most of the evidence for diel

variation in metabolism and environmental responses

is inferred from transcriptional patterns of expression

that show rhythmic diel- or circadian-driven patterns

of expression (Alabadı́ et al. 2002; Bläsing et al. 2005;

Michael et al. 2008; McClung 2014). The compara-

tively straightforward ability to measure transcripts

levels enabled the evaluation of daily rhythmic

expression patterns across various plant species.

However, protein and metabolite levels also show

daily rhythmic patterns of accumulation (Gibon et al.

2006; Graf et al. 2010; Hwang et al. 2011; Flis et al.

2016). In the model plant Arabidopsis, both primary

(e.g., maltose, fructose, GABA, and isoleucine) and

specialized metabolites (e.g., flavonoids and ter-

penoids) show a daily oscillation in their abundance

(Aharoni et al. 2003; Stitt et al. 2007; Espinoza et al.

2010; Augustijn et al. 2016). Once entrained, the

accumulation of some specialized metabolites shows a

rhythmic pattern in the absence of light, temperature,

or humidity cues indicating that this pattern of

accumulation is under the control of the circadian

clock (Gibon et al. 2006). Disruption of the circadian

clock significantly alters metabolism, including levels

of specialized metabolites (Fukushima et al. 2009).

Gating of environmental responses

Many biotic stressors such as bacterial and fungal

pathogens and herbivores (Hevia et al. 2015) have a

daily rhythm to their activity. Additionally, many

abiotic stresses have an increased probability of
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occurring at a specific time of day or season. Plant

responses to these environmental stresses are tem-

porarily coordinated. This ‘gating’ ensures that the

stress response is maximal at the time that coincides

with the highest probability of the stress occurring.

Circadian control of signaling occurs in part through

gating the response to phytohormones such as auxin,

abscisic acid, jasmonic acid, and salicylic acid (Cov-

ington et al. 2008; Goodspeed et al. 2012).

Arabidopsis plants show decreased susceptibility to

the pathogens Pseudomonas syringae pv. tomato

DC3000 (Bhardwaj et al. 2011) and Botrytis cinerea

(Ingle et al. 2015) at dawn. Even basal defense

mechanisms are under circadian control (Wang et al.

2011) suggesting that this is not a unique aspect of

these two pathogens. Interaction with beneficial

species such as attraction of pollinators and parasitoids

must also be coordinated with the daily rhythms of

these insects. The emissions of the primary mediator

of this attraction, volatile organic compounds (VOCs),

show variation throughout the day. For example, fig

(Ficus racemosa) volatiles can be distinguished by

their diel variation in temporal patterns (Borges et al.

2013). At any given point in the day, the fig plants

present a different volatile profile to match with the

biological activity of the parasitoids and pollinators.

Deleterious insects also show rhythmic behaviors

and many of the plant responses to herbivory are gated

to match the activity of the herbivore. A large percent

of metabolites induced by generalist herbivores peak

in accumulation at specific times of the day. For

example, Nicotiana attenuata has a diel rhythm of

jasmonic acid (JA) and 12-oxo-phytodienoic acid

(OPDA) accumulation in roots, but not in leaves (Kim

et al. 2011). The metabolites that oscillate in the

shoots, such as citric acid, tyrosine, phenylalanine, and

lyciumoside, were mostly found to peak during the

day. In contrast, the metabolites that oscillate in roots,

such as disaccharides and JA mostly peak at dusk or at

night. The biosynthesis of these metabolites is also

tissue-specific. Lyciumoside which is a precursor to

diterpene glycosides, peaks at dusk and is more

prevalent in sink leaves than in source leaves. The

circadian gating of the response to herbivory alters the

interaction between the plant and the herbivore.

Trichoplusia ni, a cabbage looper insect, show rhyth-

mic feeding behavior that peaks in the afternoon

(Goodspeed et al. 2012). Arabidopsis plants are able to

defend against the T. ni herbivory through concerted

timing of jasmonate production and simultaneous

reduction in salicylates. However, disruption of the

plant circadian clock or switching the phase of T. ni

feeding reduces these defenses. Like jasmonates and

salicylates, many phytochemicals have a role in plant

defenses. Thus this gating of defense responses,

combined with the effects of daily rhythms in primary

metabolism, environmental and circadian regulation

of specialized metabolite biosynthesis and processing

likely drive significant variation in phytochemical

levels throughout the day.

The response to abiotic stresses of temperature

(Fowler et al. 2005; Dong et al. 2011; Grinevich et al.

2019), UVB (Takeuchi et al. 2014; Horak and Farré

2015), and reactive oxygen species (Lai et al. 2012)

are also gated so that the response varies throughout

the day. The master regulators of low-temperature

responses, CBF transcription factors, show the highest

response to a 4 �C cold shock in the morning and a

reduced induction in response to the same stress at

night. The CBFs control, in part, the rewiring of

metabolism that occurs under low temperature (Cook

et al. 2004). In Arabidopsis, metabolism is signifi-

cantly rewired at low temperature (4 days at 4 �C),
including induction of phenylpropanoid levels (Ka-

plan et al. 2007). Constitutive expression of CBF3

recapitulates 79% of the metabolic changes observed

under low temperature in control conditions (Cook

et al. 2004). Since the response of CBF3 to low

temperature is gated by the circadian clock, the

induction of the low-temperature-responsive metabo-

lites regulated by CBF3 is also likely gated.

Seasonal changes

Perhaps more drastic than daily changes, environmen-

tal factors vary in seasonally-recurring patterns

including changes in precipitation, temperature, and

day length. Biotic and abiotic stresses also show

seasonal variation in their probability of occurrence. In

addition to these exogenous changes, as a plant

develops throughout the season there are develop-

mentally-regulated changes in phytohormones auxin,

gibberellin, ethylene, and jasmonates that interact with

environmental changes altering the sensitivity of the

plant to different stimuli depending on the time of the

season (Davies 2010; Footitt et al. 2011; Singh and

Mas 2018).
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Photoperiod

Both north and south of the equator there is an

asymmetry to the amount of light or day length

throughout the year. The amplitude of the difference

between the long days of summer and the shorter days

of winter increases with the distance from the equator.

Seasonal changes in photoperiod are concomitant with

seasonal changes in light intensity and temperature.

Therefore, when isolating the factor of photoperiod,

chamber-based experiments comparing different day

lengths are often performed. One challenge with these

experiments is that the chamber-experiments are often

performed with square waves where the changes in

light intensity and light quality which also vary across

the day and season are ignored. Ignoring these subtle

changes can result in missing important mechanisms

that control for the integration of signals (Liao et al.

2017). Most plant species are sensitive to changes in

photoperiod and respond by adjusting growth and

developmental stages. For example, silver birch,

Betula pendula, integrates both temperature and

photoperiod cues to control the timing of bud burst

(Linkosalo and Lechowicz 2006). The chilling

requirement is met long before the modeled initiation

date, suggesting a second cue is integrated to control

the timing of bud burst. Linkosalo and Lechowicz

compared the effects of a reduced red to far-red ratio

throughout the day or only at dawn and dusk and

demonstrated that the diurnal timing of the change in

light quality is an important factor in this develop-

mental transition. The integration of both light quality

timing and temperature changes may protect some

species from frost damage due to early budding

associated with warm early-spring weather. These

developmental changes can impact phytochemical

composition and distribution in the plant (Degu et al.

2014; El Senousy et al. 2014). For example, in cherry

radish (Raphanus sativus L. var. ‘Changfeng’)

increase in polyphenol and antioxidant content

increased in the root, but not in the shoot when grown

in a longer day period (Guo et al. 2019). Photoperiod

changes impact the flavonoid, phenolic, amino acid,

anthocyanin, alkaloid, and glucosinolate levels (Ber-

narth and Tetenyi 1979; Xu et al. 2011; Steindal et al.

2015). Phytochemical responses to photoperiod have

been reviewed in Verma and Shukla (2015). In

addition to these general impacts on phytochemicals,

for many compounds, specific response to photoperiod

have been described. We highlight below some

examples, grouped by chemical class, of phytochem-

icals where the daily and seasonal variation has been

described (Table 1).

Examples of daily and seasonal variation

on specific phytochemicals

Polyphenols and phenolic compounds

Polyphenols are generally high molecular weight

molecules derived from the shikimate, phenyl-

propanoid, flavonoid, anthocyanin, lignin (Mouradov

and Spangenberg 2014) and polyketide pathways in

plants. A large number of phenolic hydroxyl groups

provide these compounds with unique metabolic

properties and compounds in this class have a range

of functions in planta including UV protectants,

defense compounds, signaling molecules, antimicro-

bials, and antioxidants. Polyphenols have been con-

firmed as the source of biological activity in many

medicinal plants, particularly those used to prevent

and ameliorate metabolic diseases (Cvejić et al. 2017;

Chen et al. 2018).

Circadian, diel, and seasonal effects on total

polyphenols

The regulatory and protective functions of phenols in

oxidative stress-induced signaling may explain the

observed rhythmic accumulation in many plant

species. In Arabidopsis, the response to reactive

oxygen is circadian regulated (Lai et al. 2012).

Consistent with this observation, antioxidant activity

was found to be circadian regulated in other Brassica

(Soengas et al. 2018). However, the temporal signa-

ture of antioxidant activity was not consistent across

diverse species. Coordinating antioxidant activity with

the recurring timing of local stresses, other phenolog-

ical activity, or breeding pressures could drive species-

specific changes in the waveform of expression that

could be locally adaptive. Soengas et al. observed

circadian driven rhythmicity in the pattern of total

phenolic compound accumulation in broccoli, cab-

bage, Chinese cabbage, and turnip greens. Although

all species accumulated the highest total phenolic

content in the period surrounding dawn, the specific

phasing of the peak in accumulation varied between
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species. Broccoli and cabbage accumulation was the

highest in the dark period before dawn while Chinese

cabbage and turnip greens peaked in accumulation at

dawn. Specific compounds also showed variability in

their waveform of selection discussed below. Selec-

tion for desired traits or the need to meet the pressures

of local environments may result in observed altered

temporal profiles between species. We provide exam-

ples below for where the time of day and season of

year variation in accumulation has been observed for

polyphenolic compounds.

Flavonoids

Flavonoids function as pigments, signaling molecules,

UV-protectants, and antimicrobials. Daily rhythms of

flavonoids have been reported in the tropical tree,

Anacardium excelsum and the fern, Cryptogramma

crispa (Veit et al. 1996). In grape berries, (Vitis

vinifera) (Reshef et al. 2019) the diel pattern of

expression for some flavonoids was sensitive to the

orientation of the berry in relationship to the sun. The

flavonoid quercetin showed a rhythmic accumulation

in all three orientations. However, other flavonoids,

such as cyan-3glu, were rhythmic in some positions

but showed no change in signal across the day in

others. The observable difference in flavonoid accu-

mulation in response to the small change in solar

irradiation due to the position of the berry relative to

the large daily oscillatory light suggests that the

sensitivity of the phytochemical response is attuned to

account for this daily change in light intensity.

Seasonal variation in anthocyanin levels can manifest

if the plant is harvested at different times of the year.

For, strawberry fruit (Fragaria x ananassa), plants at

the same ripening stage and harvested at different

times of the year showed variation in anthocyanin

accumulation levels (Pincemail et al. 2012; Ariza et al.

2015). Strawberries harvested earlier in the year had

the lowest content of organic acids and antioxidant

compounds, perhaps indicating a role for increasing

day length in the accumulation of these phytochem-

icals (Ariza et al. 2015). Over all genotypes, straw-

berries in the mid to late harvest showed overall better

health-related properties. There was an interaction

between cultivar and the compound time of harvest

suggesting that healthy harvesting could be achieved

by staggering plantings by cultivar and should be a

factor considered during breeding selection.

Phenylpropanoids, phenolic acids, and aldehydes

Both the time of day and time of season plants are

harvested can impact the phenolic acid content for

some plant species. Broccoli head (Brassica oleracea

L.) harvested at the end of the day had higher phenolic

content and antioxidant activity during storage than

those harvested in the morning or at midday (Hasperué

et al. 2011). The time of year plants are harvested can

impact the nutritional quality of the product as much

as the genotypic variation. Four different cloudberry

(Rubus chamaemorus) genotypes were examined

throughout the year and seasonal variations were

observed in gallic acid, ellagic acid, and anthocyanins

(Hykkerud et al. 2018). Across all genotypes, cloud-

berry plants harvested early- and mid-season con-

tained significantly higher ellagic acid levels than

those harvested in late season (7.41, 7.03 and 6.35 mg/

g dry weight, respectively). This pattern reflected the

total phenol measurement, which was on average

higher in early-season, decreasing in mid- and late-

season (22.12, 20.97, 20.09 mg/g dry weight, respec-

tively). Although the variation between genotype was

more significant than the seasonal variation, ellagic

acid was still significantly responsive to environmen-

tal variation. In an earlier study in Rubus species,

raspberry fruits (Rubus idaeus), Mazur et al. (2014)

compared ten genotypes of raspberry fruit for the

effects of harvest season and genotype on phenolics,

ellagic acid, anthocyanins, and ascorbic acid content.

Only ascorbic acid content was consistent across

harvest seasons. Phenolics, ellagic acid, and antho-

cyanins showed significant variation depending on the

time of year the berries were harvested. The study

concluded that the ‘‘Quality of red raspberry fruits

were significantly affected both by genotype and

harvest season.’’

Total phenolic content and phenolic profile varied

in globe artichoke [Cynara cardunculus L. var.

scolymus (L.) Fiori] between plants harvested in the

winter or spring (Lombardo et al. 2010). The phenolic

content increased sixteen times in the later spring

harvest. Several compounds, 1- and 3-O-caf-

feoylquinic acids, caffeic acid, narirutin, and narin-

genin 7-O-glucoside were only detected in the spring

harvest, changing the overall polyphenol profile. The

variation in total phenolic content of Vochysia diver-

gens Poh., a pioneer tree species was greater across the

season that between geographic areas in Brazil (Uriu
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et al. 2018). Harvest time also affected the total level

of phenols and antioxidant activity in grape cultivars

(Vitis vinifera) (Piazzolla et al. 2016). In this study, the

harvest time of grapes was also found to influence the

distribution of volatiles including acetaldehyde,

2-butenal, hexanal, ethyl acetate, ethanol, D-Li-

monene resulting in an overall change in grape

quality. In the Piazzolla et al. study, since the grapes

were not at the same developmental stage, the effect

observed is likely a combination of developmental and

environmental effects.

Hydroxycinnamic acids

Leaf oils showed a time of day and time of year

variation in Lippia origanoides Kunth (Ribeiro et al.

2014). Examining plants collected near a mine in

Brazil, Ribeiro et al. identified many metabolites with

significant variation throughout the year. The major

specialized metabolites with a time of year change in

concentration were (E)-methyl cinnamate, (E)-neroli-

dol, p-cymene, 1,8-cineole, carvacrol, a-pinene, (E)-

caryophyllene and g-terpinene. Cinnamate levels also

varied by time of year with no accumulation from

March through June, followed by moderate accumu-

lation in July, peaking in concentration in August, and

returning to moderate levels from September through

February. Cinnamate also showed significant variation

in concentration depending on the time of day samples

were harvested.

In kimchi [green Chinese cabbage (Brassica rapa)

and red cabbage (Brassica oleracea)], fall and spring-

sown cultivars were compared for two genotypes. The

phenols caffeic acid, p-coumaric acid, ferulic acid, and

sinapic acid and flavonols (quercetin and kaempferol)

showed significant differences in levels between fall

and spring in both red cabbage cultivars tested (Lee

et al. 2018).

Naphthoquinones and quinones

The medicinal plant, Euclea undulata produces epi-

catechin and a-amyrin-3O-b-(5-hydroxy) ferulic acid,
both desired for their potential value in the treatment

of diabetes. However, E. undulata also produces the

naphthoquinone, 7-methyl-juglone, which is cytotox-

ic. Botha et al. (2018) evaluated the environmental and

seasonal effects on the accumulation of these three

compounds to determine if altering the harvest time

could eliminate the presence of 7-methyl-juglone.

Comparing plants harvested in the rainy (December)

and dry (August) season, in three locations, they

observed both geographic and seasonal effects on the

metabolite profile. While the variation in metabolites

between geographic locations was greater than the

variation between seasons, at a given location,

seasonal differences had a significant impact on the

metabolic profile. In particular, the 7-methyl-juglone

was not detectable in leaves in the rainy season in the

summer rainfall region, while plants from the same

region accumulated 7-methyl-juglone in the dry

season. In this same region, the desired compounds

epicatechin and a-amyrin-3O-b-(5-hydroxy) ferulic

acid, also showed seasonal variation and the stems and

leaves of E. undulata Thunb. var. myrtina contained

both epicatechin and a-amyrin-3O-b-(5-hydroxy) fer-
ulic acid and lacked 7-methyl-juglone only in the rainy

season. Therefore, the authors concluded, ‘‘For the

safe and effective use of E. undulata it would be best to

collect leaf material during the dry season in the

summer rainfall areas.’’ This example highlights the

importance of considering not only the temporal

profile of the phytochemicals of interest but also the

temporal profile of any negative or even synergistic

compounds (e.g., Fig. 1).

Alkaloids

While we found few published studies examining the

circadian, diel, or seasonal changes of the alkaloid

plant compounds, some evidence exists for diurnal

fluctuations of quinolizidine alkaloids (QA) in species

in the Lipinus genus. The fluctuations of QA concen-

trations are the greatest in the middle of the day, and

these compounds have been found in the phloem of

plants and therefore may be translocated to target

tissues where their nitrogen is used in the synthesis of

storage proteins (Wink and Witte 1984). However,

QAs can also be toxic to vertebrate herbivores, and

therefore the increase in concentrations observed

could be a defense mechanism (Sharam and Turking-

ton 2005). For example, in both L. polyphyllus and L.

hartwegii sparteine increases in the day, while in L.

articus an increase sparteine is observed at night

(Sharam and Turkington 2005). Snowshoe hare are

nocturnal and a herbivore of L. articus, therefore the

night increase in sperteine observed in this species

may be for defense.
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Fig. 1 Time of day and

season of the year impact the

composition and abundance

of phytochemical extracts.

Extract composition quality

is a combination of the

relative concentration of the

phytochemical of interest

and the antagonistic or

synergistic effects of the

remaining profile. Time of

day and seasonal variations

in the target metabolite,

toxins, and synergistic

metabolites can be taken

into consideration to

determine the optimal

growing season and time of

day to harvest extracts. In

the simplified graphic above

an extract with the patterns

shown would be optimally

harvested during the middle

of the day to account for diel

variations. Harvesting in the

summer would provide the

maximum efficacy at the

lowest toxicity across the

yearly seasonal variation
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Fluctuations in other alkaloids, such as morphine,

have been observed in Papaver somniferum (Itenov

et al. 1999). Morphine levels increased during the day

while the water content of latex (classified as a

polyterpene) was the highest at night. The authors

attributed the fluctuations of in latex water content and

morphine to changes in water transport which also

fluctuates. Alkaloids in the morphine pathway have

also been found to oscillate in hemlock (Conium

maculatum) (Fairbairn and Suwal 1961). In Hemlock,

like poppy, the precursors of morphine, codeine and

the stimulant thebaine, decrease at dawn before a

morning peak of morphine (Reviewed in Robinson

1974).

Organosulfur compounds (thiols)

Glucosinolates

Glucosinolates are amino acid derived phytochemi-

cals found in the Brassicaceae family of plants and

have a role in defense against herbivory (Mithöfer and

Boland 2012; Singh and Mas 2018). Much of this

amino-acid derived phytochemical’s economic value

is from its link to carcinogen detoxification properties

of Brassica such as broccoli, cauliflower, cabbage, and

Brussel sprouts when hydrolyzed to isothiocyanate

upon consumption. These also contribute to taste and

flavor profiles. Glucosinolates have been the object of

numerous seasonal variation studies with sometimes

conflicting findings. Studies mainly focus on the two

relatively abundant types of glucosinolates: aliphatic

glucosinolates derived from the amino acids alanine,

valine, leucine, isoleucine, and methionine; and

indoles derived from tryptophan.

Seasonal factors of higher mean temperatures and

longer photoperiods were found to correlate with the

highest concentrations of glucosinolate across ten

Brassica oleracea cultivars (Charron et al. 2005). One

study reports a sweeter and more desired taste

correlated to lower temperatures (Mølmann et al.

2015) while higher glucosinolate levels generally

correspond to warmer temperatures. Consumers

reportedly selected the sweeter tasting broccoli per-

haps at the detriment of the nutraceutical value of the

plant. Despite the correlation between generally

higher levels of glucosinolate in high temperature,

not all glucosinolates were affected similarly within

each condition. These results support the findings in

another report showing differential accumulation of

glucosinolates in broccoli (Brassica oleracea)

between spring and winter seasons (Vallejo and Toma

2003).

Terpenoids/essential oils

Isoprenoids iridoids and secoiridoids

Monoterpenes are a class of terpenoids that are known

for aromas which is why many of them are used as

essential oils. These compounds are controlled by

several genes that are circadian regulated (Zeng et al.

2017) and show diel or circadian regulation across

many species. For example, diel fluctuations of

B-pinene are described in Artemisia annua (Lu et al.

2002). As these compounds can be used by the plant in

defense against herbivores and as an attractant for

pollinators, monoterpenes may fluctuate in anticipa-

tion of herbivore or pollinator visitors. A study

conducted by Dudareva et al. (2005), found that

myrcene and nerolidol, a monoterpene and sesquiter-

pene, respectively, are controlled by the circadian

clock in Antirrhinum majus. The components of

essential oils in Pycnocycla spinosa Decne. ex Boiss

were also found to fluctuate throughout the day

(Asghari et al. 2014). In this study, citronellyl

pentanote levels were the highest in the afternoon,

P-cymene and geranyl isovalerate were the highest at

dusk, and a-eudesmol peaked in the mid-morning

hours. Seasonal variation in monoterpene volatile

emissions was observed in Mediterranean oak forests,

Quercus ilex (Lavoir et al. 2009). In oak, the emission

of the volatiles composed of a-pinene, b-pinene,

sabinene, myrcene, and limonene showed variation

across the season that decreased when water avail-

ability was limited.

Sesquiterpenes and sesquiterpene lactones

Temporal regulation of phytochemicals is also impor-

tant in the development of pharmaceuticals from

medicinal plants. The sesquiterpene lactone, artemi-

sinin, a highly effective antimalarial drug, accumu-

lates in low quantities in sweet wormwood (Artemisia

annua). Costs of artemisinin production and distribu-

tion have prevented this drug from reaching many of

those who need it. Not only is purified artemisinin

expensive, but when used alone, there is concern that it
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may lead to resistance. Therefore, the use of

artemisinin-based combination therapies (ACT)

which lower the risk of resistance is recommended

(World Health Organization 2015). ACT treatments

have improved outcomes in the treatment of malaria

(Rasoanaivo et al. 2011; Elfawal et al. 2012). How-

ever, the composition of plant extracts and concentra-

tions of nutraceutical products remain unpredictable.

For example, a recent study shows seasonal variation

in the accumulation of artemisinin in A. annua. The

yearly variation and peak seasonal period of accumu-

lation are consistent across three cultivars from

Chinese, Brazilian, and Swiss origins when grown in

the same field in West Virginia (Ferreira et al. 2018).

Conclusions and perspectives

Disruption of phytochemical timing by climate

change

The coordination between plants and the daily and

seasonally recurring environmental changes has been

optimized through millennia of evolution. However,

these environmental patterns are changing. Nights are

warming (Peng et al. 2004; Vose et al. 2004; Welch

et al. 2010; Kumar et al. 2017), seasonal patterns are

shifting (reviewed in Parmesan 2006), and patterns of

precipitation are changing (Easterling et al. 2017;

Unal et al. 2012; Pal et al. 2013; Keggenhoff et al.

2014; Ganguli and Ganguly 2016; Gitau 2016;

Rahimpour et al. 2016; Tye et al. 2016; Mallakpour

and Villarini 2017; Roque-Malo and Kumar 2017;

González-Zeas et al. 2019). Management and harvest-

ing practices refined to optimize phytochemical pro-

duction may no longer be suitable to the altered

patterns of a changing environment. Yet it is chal-

lenging to predict how these changes will impact the

phytochemical profile. The changing environmental

patterns are complex and may have antagonistic

effects on phytochemical profiles, making the com-

bined impact challenging to predict. For example, an

increase in CO2 can lead to an increase in phenolics

and a decrease in terpenoids in forest trees in the

northern hemisphere while warmer weather leads to an

increase in terpenoids and a decrease in phenolics. The

combined changes overall are predicted to result in an

increase phenolics in foliage and decrease in woody

tissue (Holopainen et al. 2018). How these changes in

temperature and CO2 combine with changes in

precipitation patterns on phytochemicals has not yet

been explored. Understanding how phytochemicals

are affected by daily and seasonal cycles in current

conditions and integration of the timing of these events

will improve the accuracy of these predictions.

Changes in environmental cycles could also impact

the plant’s temporal balance with the environment. For

example, new climate patterns could allow a herbivore

to move into a different temporal niche (Belesky and

Malinowski 2016; Porqueddu et al. 2016). If a plant

produces defense compounds at a specific time of day

or season coincident with the historical highest

activity of the herbivores the plant’s defenses may

not be sufficient to protect the plant in the new

conditions. As plants respond and adapt to changing

environments, their phytochemical profiles will likely

change and can ripple through an entire ecosystem

starting with the changes in chemicals that deter

herbivores or attract pollinators (Akula and Ravis-

hankar 2011).

Using temporal variation in phytochemicals

to improve production

The temporal variation of phytochemicals across time

of day and time of year appears to occur in a diverse

species of plants. Cognizance of this temporal control

can improve efforts to enhance the production of select

phytochemicals. When engineering or selecting plants

for enhanced phytochemical activity it will be critical

to consider that the timing of the target may vary

throughout the day and year. During selection, testing

candidates for breeding will require monitoring the

desired phytochemical at consistent times as harvest-

ing at different times can result in different results

(Hasperué et al. 2011; Pincemail et al. 2012; Ariza

et al. 2015). The plant’s endogenous clock continues

to cycle post-harvest (Goodspeed et al. 2013), and

interactions between harvest time and storage length

and conditions (Hasperué et al. 2011) will be impor-

tant to consider during selection.

Temporal and environmental variation can be used

to researchers advantage as a tool to identify regula-

tory and biosynthetic pathways of desired phytochem-

icals. Using environmental perturbations to identify

regulatory relationships between genes and metabo-

lites has been a successful approach to elucidating the

biosynthetic and regulatory components of specialized
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metabolites. Genes in glucosinolate metabolism were

identified by pairing transcriptional and metabolic

responses to sulfur depletion (Hirai et al. 2005, 2006).

In a study by Li et al. (2018) that used Dimocarpus

longan Lour. embryonic calli, to evaluate the impact

of photoperiod, light intensity, and light quality on

flavonoid content, they mapped the variation across

these environmental perturbations to identify regula-

tory components correlated (or anti-correlated) with

the changes in flavonoid content, identifying candidate

mechanisms for miRNA as regulators of flavonoid

accumulation. This approach can be used to exploit

variation that extends across time of day and year to

identify biosynthetic components and regulatory path-

ways for a specific metabolite. The temporal resolu-

tion also provides enhanced separation in clustering

approaches. Clustering volatiles across time has been

used to identify their potential environmental sensi-

tivity (Borges et al. 2013). Knowing the sensitivity of

each group can be used to interrogate their relation-

ships, their potential regulation mechanisms, and how

each groupmay respond to changes in climate; making

temporal variation a powerful tool for identifying

regulatory relationships. Not only is the accuracy of

identifying transcriptional regulators through gene

networks improved by the addition of temporal

information (Madar et al. 2009; Desai et al. 2017;

Sanchez-Castillo et al. 2018; Yang et al. 2018), but

also can be extended to identifying regulators of

metabolite accumulation (Hannah et al. 2010; Pérez-

Schindler et al. 2017).

Engineering phytochemical accumulation may also

be facilitated by analyzing the daily and seasonal flux

in the phytochemical profile. For example, efforts to

engineer plants to enhance artemisinin production or

other compounds for pharmaceutical or industrial use

requires increasing the concentration, storage, deliv-

erability, stability, purity, and performance of the

desired phytochemical (Pulice et al. 2016). Each of

these steps can be affected by environmental factors,

and production of phytochemicals can be improved by

considering environmental stresses (reviewed in Rai

et al. 2011; Naeem et al. 2017; Aftab et al. 2018). As

plants tightly control the timing of their metabolism

and stress responses, working within the framework of

this temporal regulation will aid efforts to enhance

production. Strategies to enhance production through

altering environmental stimuli (Fujiuchi et al. 2016;

Huang et al. 2016) will likely benefit from considering

the native rhythm of environmental stresses and the

endogenous plant response to maximize the effective-

ness of the treatments. Designing molecular and

biochemical strategies that integrate the temporal

variation in primary and specialized metabolism may

improve the success in optimizing phytochemical

production.

For some medicinal products, whole-plant extracts

have added benefits over single molecule products

(Adwan and Mhanna 2008; Deharo and Ginsburg

2011; Herranz-López et al. 2018). Inconsistencies in

whole-extract profiles can impact their efficacy and

acceptance as a viable alternative to single products.

Considering the temporal variation in both the primary

bioactive product and synergistic molecules may

reduce variation between producers, which could lead

to improved acceptance. To ensure the efficacy of the

product, producers will need to understand the best

time to grow and harvest the crop to optimize the

concentration of the target metabolite while also

quantifying active metabolites in the overall profile

with antagonistic or synergistic effects.

Conclusions

In a review by Robinson (1974) there is a quote from

the works of Theophrastus in the 4th century BC,

‘‘some roots should be gathered at night other by day,

and some before the sun strikes on them.’’ Over

2000 years later, molecular and biochemical evidence

is mounting in support of this advice; that time is an

important consideration in the study of phytochemi-

cals. Understanding the impact of time on phytochem-

ical composition can help to optimize phytochemical

production, enhance the quality of our food, and

efficiently meet the increasing demand for phyto-

chemicals in the background of a rapidly changing

climate.
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